hdimake Documentation
Release 2.1

Javier D. Garcia-Lasheras

April 24, 2015

Contents

Introduction 2
1.1 Contribute e e e 2
L2 SUpport o e e e e e e e e e e e 2
I3 LACENSE . . . o o ot e e e e e e e e e 2
1.4 Copyrightnotice e e 3
Features 4
2.1 Supported ToOIS o L e e e e e e e e e e 4
2.2 Supported Operating SYStEMSt bt e e e e e e e e e e e e e e e e e 4
2.3 Supported Python Version e 5
Installing hd1lmake 6
3.1 Linuxdeployment e 6
3.2 Windows specific guidelines 7
Learn by example 8
4.1 OVEIVIBW . o . v vttt e e e e e e e e e e e e 8
4.2 Thesimplest hdlmakemodule e 9
43 Abasictestbench 9
44 Runningasimulation 0. e e e e e e e e e e e 10
4.5 Constraining a design for synthesis L o L 11
4.6 Synthesizing abitstream oL L e e e e e e e e e e e e 12
4.7 Handling remote modulesl e 14
4.8 Pre and Post synthesis / simulation commands oL Lo 15
4.9 Custom variables and conditional execution oL Lo 16
4.10 Remote synthesis with Xilinx ISE o 17
4.11 Incremental synthesisin Xilinx ISE oL o oo 18
4.12 Advanced examples L L e e e e e e e e e 19
hdlmake supported actions/commands 20
5.1 Check environment (check—env) i i i it e 20
5.2 Print manifest file variables description (manifest-help) 20
5.3 Fetching submodules for a top module (fetch) 20
5.4 Cleaning the fetched repositories (C1lean) v i v v i i v i i e e e e e 20
5.5 Listmodules (1ist-mods) v i i i e e e e e e e e e e e e e e 20
56 Listfiles (List—f1iles)o it i i i it it e e e e e 21
5.7 Merge the different cores of a project (merge—cores) v ittt 21
5.8 Create/update an FPGA project (project) o v v i i i i i it e it e e 21

5.9 Automatic execution (AUTO) it e e e e e e e e e e e e 21
Manifest variables description 22
6.1 Top Manifest variables e 22
6.2 Universal variables L e e e e e e e e 22
6.3 Simulation variables e e e e e e e e 22
6.4 Synthesis variables e e e 23
6.5 Miscellaneous variables L e e e e e e e 23
Optional arguments for hdlmake 24
T.1 —h, ——help . . . e e e e e e 24
7.2 ——py ARBITRARY_CODE . . . v vt vttt et e e e e s e e e e e e 24
T3 —=10g LOG . . o i i e e 24
7.4 ——generate-project—vhd e e e e 24
TS ——FOTrCe . o e e e e 25
7.6 ——alloW—UNKNOWN . v v v v v v et et et e 25

hdimake Documentation, Release 2.1

* genindex
* modindex

e search

Contents 1

CHAPTER 1

Introduction
1.1 Contribute
* Issue Tracker: http://www.ohwr.org/projects/hdl-make/issues
* Source Code: http://www.ohwr.org/projects/hdl-make/repository
1.2 Support
If you are having issues, please let us know. We have a mailing list located at:

http://www.ohwr.org/mailing_list/show?project_id=hdl-make

1.3 License

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit: http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

(ol

The source code for the hdlmake project is licensed under the GPL license version 3 or later. To get more info about
this license, visit the following link: http://www.gnu.org/copyleft/gpl.html

GPL

Free Software

http://www.ohwr.org/projects/hdl-make/issues
http://www.ohwr.org/projects/hdl-make/repository
http://www.ohwr.org/mailing_list/show?project_id=hdl-make
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

hdimake Documentation, Release 2.1

1.4 Copyright notice

CERN, the European Organization for Nuclear Research, is the first and sole owner of all copyright of both this
document and the associated source code deliverables.

1.4. Copyright notice 3

http://home.web.cern.ch/
http://home.web.cern.ch/

CHAPTER 2

Features

 Synthesis

* Simulation

e GIT/SVN Support
* Multi Language

* Multi Tools

* Multiple Operating System Support

2.1 Supported Tools

Tool Synthesis | Simulation
Xilinx ISE Yes n.a.
Xilinx PlanAhead Yes No
Xilinx Vivado Yes No
Altera Quartus Yes n.a.
Microsemi (Actel) Libero Yes n.a.
Lattice Semi. Diamond Yes n.a.
Xilinx ISim Yes n.a.
Mentor Graphics Modelsim | n.a. Yes
Aldec Active-HDL n.a. Yes
Icarus Verilog n.a. Yes
GHDL n.a. VHDL

2.2 Supported Operating Systems

hdlmake is supported in both 32 and 64 bits operating systems.

Operating System | Comments

Linux tested on Ubuntu Precise/Trusty, CentOS 6/7
Windows tested on Windows 7/8/8.1 by using Cygwin

hdimake Documentation, Release 2.1

2.3 Supported Python Version

Version | Comments
Python 2 | Runs on 2.7.x
Python 3 | To be done, not supported yet

2.3. Supported Python Version

CHAPTER 3

Installing hdlmake

3.1 Linux deployment

hdlmake is a Python application and, in order to allow an agile development and customization, is not distributed
as a packaged executable file, but as a set of Python source files. In this way, there is no need to build hdlmake, as
the Python code gets interpreted on the fly. In order to run hdlmake as a shell command, the next process has to be
followed.

As a prerequisite, you must have the following programs installed in your host machine:
* python: you need a compatible Python deployment
* git: you need git for both fetching the hd1make code and accessing to remote HDL repositories.
e svn: svn will only be used when accessing to remote SVN HDL repositories.

Now, you need to fetch the code from the official hdlmake git repository, that can be found at the next link:
http://www.ohwr.org/projects/hdl-make/repository

Once you have a valid hdlmake source tree, you need to create a launch script in /usr/bin or any other available
location at shell $PATH. You can name the script as you prefer so, by doing this, multiple hd1make versions can
easily be used in the same machine. In any case, in this documentation we will consider that the name for this launch
script is just hd1lmake.

#!/usr/bin/env bash
python2.7 /path_to_hdlmake_sources/hdl-make/hdlmake/_ _main__ .py 5@

here:
e python2.7 is the executable of the Python deployment we want to use with hd1lmake.
* path_to_hdlmake_sources is the absolute path in which the hd1lmake source code has been fetched.
* hdl-make is the name of the folder created when you checked out the repo.
* hdlmake is the subfolder of hdl-make (this is not binary or a file, this is folder name).
Once the launch script has been created, the appropriated execution rights must be set:

chmod +x /usr/bin/hdlmake

http://www.ohwr.org/projects/hdl-make/repository

hdimake Documentation, Release 2.1

3.2 Windows specific guidelines

Despite the fact that hd1make was originally designed to be used in Linux environments, the new release of the tool
has been modified to be easily used in both 32 and 64 bits Windows Operating Systems inside a Cygwin deployment.
In this way, you must just follow the next steps to be able to run hd1lmake.

First, install a valid Cygwin environment for your Windows machine. I order to access to the full set of features from
hdlmake, you must choose at least the following packages when deploying Cygwin:

* python (choose the most up-to-date 2.7 release)
* openssh

* git-svn

e git

e curl

* make

Once you have installed your Cygwin environment, you can just get into the Cygwin console and operate as if you
were inside a Linux machine for both installing and working with hd1lmake.

Environment -

When working in Linux or Windows inside Cygwin, in order to work with hd1lmake we must assure that the tools
executables that are going to be used are accessibles in the shell $PATH. This is a requirement for both simulation and
synthesis

..warning:: there is another way to define the specific tools as an environmental variable, but this is buggy and fails
when executing some of the actions. The $PATH way is the most easy and stable way to go!

3.2. Windows specific guidelines 7

CHAPTER 4

Learn by example

As acompanion of hd1make, we can find a folder containing some easy design examples that can serve us as both tests
and design templates. This folder is named hdl-make/tests/‘and is automatically downloaded
when the ‘‘hdlmake git repository is fetched.

4.1 Overview

Inside the tests folder, you’ll find a project called counter. This project has been specifically designed to serve
as an easy template/test for the following features:

¢ Testbench simulation
* Bitstream synthesis
* Verilog/VHDL support
The first level of the counter directory structure is the following:

user@host:~$ tree -d -L 1 counter/
counter/

| =— modules

|—— sim

|-— syn

| -— testbench

-— top

where each folder has the following role:
* modules contains the code of the design, a very simple 8-bit counter.
* sim contain a set of top manifests targeted to simulation by using different tools.
* syn contain a set of top manifests targeted to synthesis by using different tools.
* testbench contains a testbench for the design, covering the 8-bit counter.

* top contains a top module wrapper attaching the counter design to the pushbuttons & LEDs of a real FPGA
design.

For each simulation or synthesis that can be executed, we have both Verilog and VHDL source codes for the module,
testbench and top. So in every of the previous folder, we will have as children a verilog and an vhdl folder (note that
ghdl only supports VHDL and iverilog only supports Verilog).

hdimake Documentation, Release 2.1

4.2 The simplest hdlmake module

If we take a deeper look to the modules folder we find that we really have two different hdlmake modules, one
describing the counter as Verilog and other as VHDL.

user@host:~$ tree counter/modules/
counter/modules/
‘-— counter

|-— verilog

| | -— counter.v

| ‘-— Manifest.py

‘—— vhdl

| -— counter.vhd

\

—— Manifest.py

Each of the modules contains a single file, so in the VHDL case the associated Manifest.py is just:

files = |
"counter.vhd",

]

While in the Verilog one the Manifest.py is:

files = [
"counter.v",

4.3 A basic testbench

Now, if we focus on the testbench folder, we have that we have again two modules, targeted to cover both the
VHDL and the Verilog based counter modules we have just seen.

user@host:~$ tree counter/testbench/
counter/testbench/
‘—— counter_tb
|-— verilog
| | -— counter_tb.v
| ‘-— Manifest.py
‘—— vhdl
| -— counter_tb.vhd
‘-— Manifest.py

Each of the modules contains a single testbench file written in the appropriated language, but in order to define the
real project structure, the Manifest.py must include a reference to the modules under test. Thus, in the case of VHDL,
the Manifest.py is:

files = [
"counter_tb.vhd",

]

modules = {

"local" : ["../../../modules/counter/vhdl"],
}

While in Verilog the Manifest.py is:

4.2. The simplest hdlmake module 9

hdimake Documentation, Release 2.1

files = [
"counter_tb.v",

modules = {
"local" : ["../../../modules/counter/verilog" 1],

}

Note that, in both cases, the children modules are 1ocal.

4.4 Running a simulation

Now, we have all that we need to run a simulation for our simple design. If we take a look to the sim folder contents,
we see that there is one folder for each of the supported simulations tools:

&

user@host:~S
counter/sim
|-— aldec
|-— ghdl

|—— isim

tree -d -L 1 counter/sim

|-— iverilog
—— modelsim

As an example, let’s focus on the mode1sim folder:

user@host:~$ tree counter/sim/modelsim/
counter/sim/modelsim/

|-— verilog

| ‘-— Manifest.py
| -— vhdl

| ‘-— Manifest.py
‘-— vsim.do

We can see that there is a top Manifest.py for both Verilog and VHDL languages. In addition, we have a vsim.do
file that contains Modelsim specific commands that are common for both HDL languages.

In the VHDL case, the top Manifest.py for Modelsim simulation is:

action = "simulation"
sim_tool = "modelsim"
top_module = "counter_tb"
sim_post_cmd = "vsim -do ../vsim.do -i counter_tb"
modules = {
"local" : ["../../../testbench/counter_tb/vhdl" 1],

}

And in the Verilog case, the associated Manifest.py is:

action = "simulation"

sim_tool = "modelsim"

top_module = "counter_tb"

sim_post_cmd = "vsim -do ../vsim.do -1 counter_tb"
modules = {

4.4. Running a simulation 10

hdimake Documentation, Release 2.1

"local"™ : ["../../../testbench/counter_tb/verilog"],
}

In both cases, we can see that the modules parameter points to the specific VHDL or Verilog testbench, while the
other fields remain the same for both of the languages.

The following common top specific Manifest variables describes the simulation:
* action: indicates that we are going to perform a simulation.
* sim_tool: indicates that modelsim is going to be the simulation we are going to use.
* top_module: indicates the name of the top HDL entity/instance that is going to be simulated.
* sim_post_cmd: indicates a command that must be issued after the simulation process has finnished.

Now, if we want to launch the simulation, we must follow the next steps. First, get into the folder containing the top
Manifest.py we want to execute and run hd1lmake without arguments. e.g. for VHDL:

user@host:~$ cd counter/sim/modelsim/vhdl
user@host:~5 hdlmake

This generates a simulation Makefile that can be executed by issuing the well known make command. When doing
this, the appropriated HDL files are compiled in order following the hierachy described in the modules/Manifest.py
tree. Now, once the design is compiled, if we want to run an actual simulation we need to issue a specific Modelsim
command:

user@host:~$ make
user@host:~$ vsim —-do ../vsim.do —-i counter_tb

But, because we have already defined a post simulation command into the Manifest.py, the generated Makefile allows
us to combine the compilation and the test run in a single command. In this way, the second command is not required:

user@host:~$ make

If everything goes well, a graphical viewer should appear showing the simulated waveform. Note that every simula-
tion top Manifest.py in the sim folder includes a tool specific sim_post_command, so all the simulations in this
example can be generated by using the same simple command sequence that has been exposed here.

4.5 Constraining a design for synthesis

The top folder contains the a series of HDL files describing how to attach the counter design to the PushButtons &
LEDs of real FPGA powered design. The set has been chosed so that we have an example of every FPGA vendor
supported by the hd1make tool.

user@host:~5 tree -d -L 1 counter/top
counter/top

| -— brevia2_dk

|-— cyclone3_sk

| -— proasic3_sk

—-— spec_vi4

If we focus on the spec_v4 folder, we can see that we have the following contents:

user@host:~S tree counter/top/spec_vi4/
counter/top/spec_v4/

| -— spec_top.uct

|-— verilog

| |-— Manifest.py

4.5. Constraining a design for synthesis 11

hdimake Documentation, Release 2.1

| ‘-— spec_top.v
‘—— vhdl
|-— Manifest.py

‘-— spec_top.vhd

We can see that we have two different modules, one for VHDL and one for Verilog, each one containing a top module
that links the counter design module to the outer world. In addition, we have a common spec_top.ucf constraints
file that defines the specific FPGA pins that are connected with each HDL design port.

In this way, the VHDL Manifest.py is:

files = ["spec_top.vhd", "../spec_top.ucf"]

modules = {
"local" : ["../../../modules/counter/vhdl"],
}

And the Verilog one is:

files = ["spec_top.v", "../spec_top.ucf"]

modules = {
"local"™ : ["../../../modules/counter/verilog" 1,

4.6 Synthesizing a bitstream

Once we have a constrained design targeted to a real FPGA board, we can generate a valid bitstream configuration
file that can be downloaded into the FPGA configuration memory. In order to do that, in the syn folder we can find
examples of top Manifest.py targeted to perform a bitstream generation by using all of the synthesis tools supported
by hdlmake:

user@host:~$ tree -d -L 1 counter/syn
counter/syn

| -— brevia2_dk_diamond

|-— cyclone3_sk_qguartus

|-— proasic3_sk_libero

|-— spec_v4_ise

—— spec_v4_planahead

Note that we have a different tool associated to each of the different supported vendor specific FPGA boards. The only
exception is the spec_v4 design, that can be synthesized by using both Xilinx ISE and Xilinx PlanAhead.

If we focus on the spec_v4_1ise test case, we can see the following contents in the associated folder:

user@host:~$ tree -d -L 1 counter/syn/spec_vi4_ise
counter/syn/spec_vi4_ise/

|-— verilog

| ‘-— Manifest.py

‘—-— vhdl

\

—-— Manifest.py

As we can see, we have a top synthesis Manifest.py for Verilog and another one for VHDL. If we take a look to the
VHDL Manifest.py, we have:

target = "xilinx"
action = "synthesis"

4.6. Synthesizing a bitstream 12

hdimake Documentation, Release 2.1

syn_device = "xcb6slx45t"
syn_grade = "-3"
syn_package = "fgg4g84"
syn_top = "spec_top"
syn_project = "demo.xise"
syn_tool = "ise"
modules = {
"local"™ : ["../../../top/spec_v4/vhdl"],

}

And for the Verilog synthesis top Manifest.py:

target = "xilinx"
action = "synthesis"
syn_device = "xcb6slx45t"
syn_grade = "-3"
syn_package = "fgg4g84"
syn_top = "spec_top"
syn_project = "demo.xise"
syn_tool = "ise"
modules = {
"local™ : ["../../../top/spec_v4/verilog" 1,

}

We can see that the only difference is that each of the top synthesis Manifest.py points to its specific Verilog/VHDL
top module describing the interface for the constrained FPGA design. The other Manifest.py variables are common
for both languages and they means:

* target: specific targeted FPGA architecture

e action: indicates that this is a synthesis process

* syn_device: indicates the specific FPGA device

* syn_grade: indicates the specific FPGA speed grade

* syn_package: indicates the specific FPGA package

* syn_top: indicates the name of the top HDL instance/module to be synthesized.

* syn_project: indicates the name of the FPGA project that is going to be created.
* syn_tool: indicates the specific synthesis tool that is going to be used.

Now, in order to generate the bitstream for our board, we just get into the folder containing the specific top Manifest.py
for synthesis and run hd1make without arguments, e.g. for VHDL:

&

user@host:~$ cd counter/syn/spec_v4_ise/vhdl
user@host:~5$ hdlmake

The hd1lmake performs two independent actions in the next order:

1. Create an ISE project containing the all the files that are in the hierachy indicated by the Manifest.py tree. If
there is an existing project in the folder, this will be updated accordingly.

2. Generate a synthesis Makefile which contains all the information for building the associated ISE project in order
to get a valid bitstream.

4.6. Synthesizing a bitstream 13

hdimake Documentation, Release 2.1

So, once hdlmake has already generated the project and the Makefile, issuing a simple make command is enough to
synthesize a valid bitstream. Then, we can issue a clean target for make in order to erase the most of the intermediate
generated stuff and even a mrproper one to remove everything but the bitstream and the project.

user@host:~$ make
user@host:~$ make clean
user@host:~5 make mrproper

Note that hd1make and the examples included in the counter test have been designed in order to be regular across
the different toolchains. In this way, every top Manifest.py for synthesis in the syn folder can be executed to build a
valid bitstream by using the same command sequence we have seen in this section.

4.7 Handling remote modules

Let’s take a simple example of how hd1lmake handles repositories.
Our project consists of 4 HDL modules and one testbench. Its directory looks like this:

user@host:~/test/projs tree -d

‘—-— hdl
| =— modulel
| —— module?2
| —— module3
| —— moduled
‘-— tb

Supposing that the testbench will use all modules, the manifest in tb directory should look like this:

modules = {
"local":["../modulel","../module2","../module3","../moduled"]
}

This case was very trivial. Let’s try now to complicate the situation a bit. Let say, that two of our modules are stored
in a SVN repository and the last one in a GIT repository. What is more, for module2 we would like to use revision
number 25. In that case, the manifest will look as follows:

modules = {
"local": "../modulel"
"svn": [
"http://path.to.repo/module2",
"http://path.to.repo/module3@25"

1,
"git":"git@github.com:user/moduled.git"
}

The generated makefile will work fine. The only issue is that the modules will be fetched to the directory of testbench,
which is not very elegant. To make it better, add fet chto to the manifest:

fetchto = ".."

This will tell Hdlmake to fetch modules to the project catalog. Let’s see how it works:

user@host:~/test/projs tree -d

‘-— hdl
| —— modulel
‘—— tb

4.7. Handling remote modules 14

hdimake Documentation, Release 2.1

user@host:~/test/projs cd hdl/tb
user@host:~/test/proj/hdl/tbs hdlmake.py -f
user@host:~/test/projs cd ../..
user@host:~/test/projs tree -d

‘—— hdl
| —— modulel
| —— module2
| —— module3
| -—— moduled
‘—— tb

And we finally get the original project we started with.

4.8 Pre and Post synthesis / simulation commands

As we have already seen in the simulation example, hd1lmake allows for the injection of optional external shell
commands that are executed just before and/or just after the selected action has been executed. By using this feature,
we can automate other custom tasks in addition to the hd1make specific ones.

If a external command has been defined in the top Manifest, this is automatically written by hdlmake into the
generated Makefile. In this way, the external commands are automatically executed in order when a make command
is issued.

Synthesis:

In order to add external commands to a synthesis top makefile, the following parameters must be introduced:
Name Type | Description Default
syn_pre_cmd | str Command to be executed before synthesis | None
syn_post_cmd | str Command to be executed after synthesis None

As a very simple example, we can introduce both extra commands in the top synthesis makefile we have previously
seen:

target = "xilinx"
action = "synthesis"
syn_device = "xcb6slx45t"
syn_grade = "-3"
syn_package = "fgg4g84"
syn_top = "spec_top"
syn_project = "demo.xise"
syn_tool = "ise"
syn_pre_cmd = "echo This is executed just before the synthesis"
syn_post_cmd = "echo This is executed just after the synthesis"
modules = {
"local™ : ["../../../top/spec_v4/verilog" 1],
}
Simulation:

Now, if we want to add external commands to a simulation top makefile, the following parameters must be introduced:

Name Type | Description Default
sim_pre_cmd str Command to be executed before simulation | None
sim_post_cmd | str Command to be executed after simulation None

4.8. Pre and Post synthesis / simulation commands 15

hdimake Documentation, Release 2.1

As a very simple example, we can introduce both extra commands in the top simulation makefile we have previously
seen:

action = "simulation"
sim_tool = "modelsim"
top_module = "counter_tb"
sim_pre_cmd = "echo This is executed just before the simulation"
sim_post_cmd = "echo This is executed just after the simulation”
modules = {

"local" : ["../../../testbench/counter_tb/verilog"],

}

Multiline commands:

If you need to execute a more complex action from the pre/post synthesis/simulation commands, you can point to an
external shell script or program. As an alternative, you can use a multiline string in order to inject multiple commands
into the Makefile.

As a first option, multiple commands can be launched by spliting a single long string into one piece per command. The
drawback for this approach is that the original single line is reconstructed an inserted into the Makefile, so the specific
external command Makefile target include just a single entry. This is why, in the following example, semicolons are
used in order to separate the sequential commands:

syn_pre_cmd = (
"mkdir /home/user/Workspace/testl;"
"mkdir /home/user/Workspace/test2;"
"mkdir /home/user/Workspace/test3;"
"mkdir /home/user/Workspace/testd;"
"mkdir /home/user/Workspace/test5"

)

A cleaner alternative, is using a multiline text in which line return and tabulation characters has been introduced in
order to separate in different lines each of the commans when they are written into the Makefiles. In the following
example, this approach is exemplified:

syn_pre_cmd = (
"mkdir /home/user/Workspace/testl\n\t\t"
"mkdir /home/user/Workspace/test2\n\t\t"
"mkdir /home/user/Workspace/test3\n\t\t"
"mkdir /home/user/Workspace/test4\n\t\t"
"mkdir /home/user/Workspace/test5"

4.9 Custom variables and conditional execution

In order to give an extra level of flexibility when defining the files and modules that are going to be used in a specific
project, hd1lmake allows for the introduction of custom variables in the top Manifest that can then be accessed from
inside all of the Manifests in the design hierarchy. This is a very handy feature when different synthesis or simulation
configurations in complex designs should be selected from the top level Manifest when running hd1lmake.

As a very simple example of how this mechanism can be used, suppose that we want to simulate a design that uses a
module for which two different harware descriptions are available, one in VHDL and one in Verilog (mixed language
is a common feature of commercial simulation tools and is an under-development feature for Icarus Verilog).

For this purpose, we introduce an if clause inside a children Manifest in which the simulate_vhdl boolean
variable is used to select the content of the following modules to be scanned:

4.9. Custom variables and conditional execution 16

hdimake Documentation, Release 2.1

if simulate_vhdl:
print ("We are using the VHDL module")

modules = {
"local" : ["../../../modules/counter/vhdl"],
}
else:
print ("We are using the Verilog module")
modules = {
"local" : ["../../../modules/counter/verilog" 1],

}

Now, in order to define the simulate_vhdl variable value, we can use two different approachs. The first one is to
include this as a new variable in the top Manifest.py, i.e.:

action = "simulation"
sim_tool = "modelsim"
top_module = "counter_tb"

simulate_vhdl = False

modules = {
"local"™ : ["../../../testbench/counter_tb/verilog"],
}

But we can also define the variable value by injecting custom Python code from the command line when hd1lmake is
executed:

hdlmake —--py "simulate_vhdl = False" auto

Note: New custom variables are not allowed outside the TOP Manifest.py. In this way, despite the fact that all of the
Pyhton code in the used Manifest.py files is executed when hd1lmake is launched, not all of the Python constructions

can be implemented.

Note: In order to allow the insertion of new custom variables in the child Manifests, you can try the
-—allow-unknown experimental feature. By specifiying this optional argument to the hd1make command line, a

warning message is raised when an unknown option or variable is defined in a child Manifest.py, but the variable itself
is inserted and processed.

4.10 Remote synthesis with Xilinx ISE

When using ISE synthesis, hd1lmake allows for the implementation of a centralized synthesis machine. For this
purpose, when running hd1lmake an extra remote synthesis target is created in the Makefile so that the actual resource
intensive synthesis process is executed in a remote machine instead of in the local one.

In order to do that, when a remote synthesis is performed the local machine connects to the synthesis server through a
secure TCP/IP connection by using SSL. For this purpose, the following tools need to be installed:

Machine | Communication Software
Client ISE, ssh-server, rsync, screen (optional)
Server ssh-client, rsync, screen (optional)

Note: You’ll need a local ISE deployment if you want to regenerate the synthesis Makefile or the ISE project (.xise),

files that are mandatory to perform both local and remote synthesis. But, if you have a valid Makefile and ISE project,
you can launch the remote synthesis from a local machine in which the ISE toolchain is not installed.

4.10. Remote synthesis with Xilinx ISE 17

hdimake Documentation, Release 2.1

Before running the remote synthesis Makefile targets, there are different parameters that need to defined for proper
operation. These can be defined as shell environmental variables or, alternatively, inside the Makefile itself:

Environmental Variable Makefile Variable | Description
HDLMAKE_RSYNTH_USER USER Remote synthesis user in the host machine
HDLMAKE_RSYNTH_SERVER SERVER IP/Address of the remote synthesis server
HDLMAKE_RSYNTH_ISE_PATH | ISE_PATH Path of the ISE binaries in the server

In addition, an optional HDLMAKE_RSYNTH_USE_SCREEN environmental variable can be set to 1 in order to use
screen when the remote connection is stablished. If this variable is not defined or set to other value, a standard shell
connection is used (by using screen, the remote synthesis feedback messages are smoothly printed).

As an example, in order to launch a remote synthesis by using the screen interface to connect with the user “javi”,
available inside the 64 bit Linux machine placed at address 192.168.0.13 in the local network which features a Xilinx
ISE deployment in the default installation folder, we should issue:

export HDLMAKE_RSYNTH_USER=javi

export HDLMAKE_RSYNTH_SERVER=192.168.0.13

export HDLMAKE RSYNTH TISE_PATH=/opt/Xilinx/14.7/ISE_DS/ISE/bin/lin64/
export HDLMAKE_RSYNTH_USE_SCREEN=1

Once this parameters are defined, we can use any of the available remote synthesis Makefile targets, that are enumer-
ated in the following table:

Remote Makefile Target | Target Description

remote Transfer required files to the remote server and run the synthesis
sync Copy back the synthesis outcomes in the server to the local folder
cleanremote Delete the remote synthesis folder to free space in the server

4.11 Incremental synthesis in Xilinx ISE

Note that, for both local and remote Xilinx ISE synthesis, the synthesis process in the Makefile generated by hd1make
performs the complete process by running a step-by-step approach that goes from synthesis to bitstream generation
instead of executing a single “build_all” command. Going through this step-by-step path, the synthesis process scans
for already performed ISE steps, so that only the pending ones are actually executed (this information is stored in the
associated .gise file).

The different Xilinx ISE steps that are performed by the synthesis makefile are:
* Synthesize - XST
* Translate
* Map
* Place & Route
* Generate Programming File

The main advantage of this approach is that, when synthesizing complex designs, the process can be resumed if it fails
or is halted and the already performed jobs don’t need to be re-launched. The drawback is that a little time overhead
is introduced while scanning for the already completed stuff, and this can be noticed if the design is trivial.

If you want to re-synthesize the whole system from the start without scanning for already performed jobs, just perform
amake cleanormake cleanremote before executing the make or make remote command.

4.11. Incremental synthesis in Xilinx ISE 18

hdimake Documentation, Release 2.1

4.12 Advanced examples

EVO project: PlanAhead synthesis project for the Zedboard platform, powered by Xilinx Zynq based
ARM Dual Cortex-A9 processor plus Artix grade FPGA and performing an asynchronous logic demo:
http://www.ohwr.org/projects/evo/repository

UMY, Mentor Questa & System Verilog simulation: A test example involving these tools and languages is included
in the hd1lmake source tree. You can find it inside the tests/questa_uvm_sv folder.

4.12. Advanced examples 19

http://www.ohwr.org/projects/evo/repository

CHAPTER 5

hdimake supported actions/commands

5.1 Check environment (check-env)

Check environment for HDLMake-related settings. This scan the top Manifest and report if the potentially used tools
or/and environment variables are met or not.

5.2 Print manifest file variables description (manifest-help)

Print manifest file variables description

5.3 Fetching submodules for a top module (fetch)

Fetch and/or update remote modules listed in Manifest. It is assumed that a projects can consist of modules, that are
stored in different places (locally or a repo). The same thing is about each of those modules - they can be based on
other modules. Hdlmake can fetch all of them and store them in specified places. For each module one can specify a
target catalog with manifest variable fet chto. Its value must be a name (existent or not) of a folder. The folder may
be located anywhere in the filesystem. It must be then a relative path (hd1make support solely relative paths).

5.4 Cleaning the fetched repositories (clean)

remove all modules fetched for direct and indirect children of this module

5.5 List modules (1ist-mods)

List all modules involved in the design described by the top manifest. In addition to the module path & name, a code
number indicating the module origin will be returned for each of the modules. These number means:

Code | Origin
1 GIT

2 SVN
3 Local

20

hdimake Documentation, Release 2.1

5.6 List files (1ist-files)

List all the files that are defined inside all the modules in the hierachy in the form of a space-separated string

5.7 Merge the different cores of a project (merge—cores)

Merges the entire synthesizable content of an project into a pair of VHDL/Verilog files

5.8 Create/update an FPGA project (project)

When a top manifest has been written for synthesis, hd1lmake reads the targeted tool and creates a new specific
project by adding both the whole file set from the module tree and the appropriated project properties.

The project will be specific for the targeted synthesis tool and, if this already exists, the hd1lmake will update its
contents with the ones derived from the module/files hierachy in the Manifest tree.

Currently, the following FPGA IDEs are supported:

Vendor FPGA IDE
Xilinx ISE

Xilinx PlanAhead
Altera Quartus IT
Lattice Semi. Diamond IDE
Microsemi (formerly Actel) | Libero IDE/SoC

Note: both ise-project and quartus-project commands has been mantained in the code for backwards
compatiblity. In any case, when any of these are found, the general pro ject action is launched.

5.9 Automatic execution (auto)

This is the default action for hdlmake, the one that is run when a command is not given.

Note: The auto command is just inferred if the issued command is a plain hdlmake. If an optional argument is
provided, you need to specify the specific command that is going to be executed.

The basic behaviour will be defined by the value of the action manifest parameter in the hierachy top
Manifest.py. This can be set to simulation or synthesis, and the associated command sequence will
be:

simulation:

1. generate a simulation makefile including all the files required for the defined testbench
synthesis:

1. create/update the FPGA project including all the files required for bitstream generation

2. generate a synthesis makefile

Note: in any case, it’s supposed that all the required modules have been previously fetched. Otherwise, the process
will fail.

5.6. List files (1ist-files) 21

CHAPTER 6

Manifest variables description

6.1 Top Manifest variables

Name Type Description Default
action str What is the action that should be taken (simulation/synthesis) |
top_module str Top level entity for synthesis and simulation None
incl_makefiles | list, str | List of .mk files appended to toplevel makefile [

6.2 Universal variables

Name Type Description Default
fetchto str Destination for fetched modules None
modules dict List of local modules {}
files str, list | List of files from the current module [
library str Destination library for module’s VHDL files | work
include_dirs | list, str | Include dirs for Verilog sources None

6.3 Simulation variables

Basic simulation variables:
Name Type | Description Default
sim_tool str Simulation tool to be used (e.g. isim, vsim, iverilog) | None
sim_pre_cmd str Command to be executed before simulation None
sim_post_cmd | str Command to be executed after simulation None

Modelsim/VSim specific variables:

Name Type | Description Default
vsim_opt | str Additional options for vsim |
veom_opt | str Additional options for vcom |
vlog_opt | str Additional options for vlog |
vmap_opt | str Additional options for vmap |

Icarus Verilog specific variables:
Name Type | Description Default
iverilog_opt | str Additional options for iverilog |

22

hdimake Documentation, Release 2.1

Others:

Name

Type Description

Default

sim_only_files
bit_file_targets

list, str | List of files that are used only in simulation | []
list, str | List of files that are used only in simulation | []

6.4 Synthesis variables

Basic synthesis variables:

Name Type | Description Default
target str What is the target architecture «“
syn_tool str Tool to be used in the synthesis None
syn_device str Target FPGA device None
syn_grade str Speed grade of target FPGA None
syn_package str Package variant of target FPGA None
syn_top str Top level module for synthesis None
syn_project str Project file name None
syn_pre_cmd | str Command to be executed before synthesis | None
syn_post_cmd | str Command to be executed after synthesis None

Xilinx ISE specific variables:
Name Type | Description Default
syn_ise_version | str Force particular ISE version | None

Altera QuartuslI specific variables:
Name Type | Description Default
quartus_preflow str Quartus pre-flow script file None
quartus_postmodule | str Quartus post-module script file | None
quartus_postflow str Quartus post-flow script file None

6.5 Miscellaneous variables

Name Type | Description Default
syn_name | str Name of the folder at remote synthesis machine None
force_tool | str Force certain version of a tool, e.g. ‘ise < 13.2” or ‘iverilog == 0.9.6 | None

6.4. Synthesis variables

23

CHAPTER 7

Optional arguments for hdlmake

Hdlmake can be run with several arguments. The way of using them is identical with the standard one in Linux
systems. The order of the arguments is not important. Hereafter you can find each argument with a short description.

7.1 -h, —--help

Shows help message that is automatically generated with Python’s optparse module. Gives a short description of each
available option.

7.2 ——py ARBITRARY CODE

Add arbitrary code when evaluation all manifests

7.3 —-1log LOG

Set logging level for the Python logger facility. You can choose one of the levels in the following tables, in which the
the associated internal logging numeric value is also included:

Log Level Numeric Value
critical | 50

error 40
warning 30
info 20
debug 10

not provided | 0

7.4 —-—generate-project-vhd

Warning: this is an experimental feature!!

Generate project . vhd file with a meta package describing the project.

This option is targeted to VHDL designs in which the SDB (Self Describing Bus) standard is going to be used. You
can get more information about SDB in the following link: http://www.ohwr.org/projects/fpga-config-space/wiki

24

http://www.ohwr.org/projects/fpga-config-space/wiki

hdimake Documentation, Release 2.1

7.5 ——force

Force hdlmake to generate the makefile, even if the specified tool is missing.

7.6 ——allow—-unknown

Warning: this is an experimental feature!!

Allow the insertion of new options or variables inside the child Manifest. Is this is option is not specified, the only

place in which new options or variables can be defined is the top Manifest.

7.5. ——force

25

	Introduction
	Contribute
	Support
	License
	Copyright notice

	Features
	Supported Tools
	Supported Operating Systems
	Supported Python Version

	Installing hdlmake
	Linux deployment
	Windows specific guidelines

	Learn by example
	Overview
	The simplest hdlmake module
	A basic testbench
	Running a simulation
	Constraining a design for synthesis
	Synthesizing a bitstream
	Handling remote modules
	Pre and Post synthesis / simulation commands
	Custom variables and conditional execution
	Remote synthesis with Xilinx ISE
	Incremental synthesis in Xilinx ISE
	Advanced examples

	hdlmake supported actions/commands
	Check environment (check-env)
	Print manifest file variables description (manifest-help)
	Fetching submodules for a top module (fetch)
	Cleaning the fetched repositories (clean)
	List modules (list-mods)
	List files (list-files)
	Merge the different cores of a project (merge-cores)
	Create/update an FPGA project (project)
	Automatic execution (auto)

	Manifest variables description
	Top Manifest variables
	Universal variables
	Simulation variables
	Synthesis variables
	Miscellaneous variables

	Optional arguments for hdlmake
	-h, --help
	--py ARBITRARY_CODE
	--log LOG
	--generate-project-vhd
	--force
	--allow-unknown

